1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
| import javax.swing.*; import java.util.ArrayList; import java.util.Arrays; import java.util.LinkedList;
public class Graph { private ArrayList<String> vertexList; private int[][] edges; private int numOfEdges; private boolean[] isVisited;
public static void main(String[] args) { int n = 5; String[] vertexs = {"A", "B", "C", "D", "E"}; Graph graph = new Graph(n); for (String vertex : vertexs) { graph.insertVertex(vertex); } graph.insertEdge(0, 1, 1); graph.insertEdge(0, 2, 1); graph.insertEdge(1, 2, 1); graph.insertEdge(1, 3, 1); graph.insertEdge(1, 4, 1);
// 显示一把邻接矩阵 graph.showGraph();
// System.out.println("深度遍历"); // graph.dfs();
System.out.println(); System.out.println("广度遍历"); graph.bfs(); }
public Graph(int n) { edges = new int[n][n]; vertexList = new ArrayList<String>(n); numOfEdges = 0; isVisited = new boolean[n]; }
// 深度优先遍历算法 private void dfs(boolean[] isVisited, int i) { System.out.print(getValueByIndex(i) + "->"); isVisited[i] = true; int w = getFirstNeighbor(i); while (w != -1) { if (!isVisited[w]) { dfs(isVisited, w); } // 根据前一个邻接节点,获取下一个邻接节点 w = getNextNeighbor(i, w); } }
// 对dfs进行重载,遍历所有结点,进行dfs public void dfs() { for (int i=0; i < getNumOfVertex(); i++) { if (isVisited[i]) { continue; } dfs(isVisited, i); } }
// 广度优先遍历算法 private void bfs(boolean[] isVisited, int i) { int u; int w; LinkedList queue = new LinkedList(); System.out.print(getValueByIndex(i) + "=>"); isVisited[i] = true; queue.addLast(i);
while ( !queue.isEmpty()) { u = (Integer) queue.removeFirst(); w = getFirstNeighbor(u); while (w != -1) { if (!isVisited[w]) { System.out.print(getValueByIndex(w) + "=>"); isVisited[w] = true; queue.addLast(w); } // 根据结点u,查找w后面的一个邻结点,递归查找 w = getNextNeighbor(u, w); } } }
// 对bfs进行重载,遍历所有结点 public void bfs() { for (int i = 0; i < getNumOfVertex(); i++) { if (isVisited[i]) { continue; } bfs(isVisited, i); } }
// 获取第一个邻接节点的下标w public int getFirstNeighbor(int index) { for (int j = 0; j < vertexList.size(); j++) { if (edges[index][j] > 0) { return j; } } return -1; }
// 根据前一个邻接节点,获取下一个邻接节点 public int getNextNeighbor(int v1, int v2) { for (int j = v2 + 1; j < vertexList.size(); j++) { if(edges[v1][j] > 0) { return j; } } return -1; }
public void insertVertex(String vertex) { vertexList.add(vertex); }
public void insertEdge(int v1, int v2, int weight) { edges[v1][v2] = weight; edges[v2][v1] = weight; numOfEdges++; }
public String getValueByIndex(int i) { return vertexList.get(i); }
public int getNumOfVertex() { return vertexList.size(); }
public int getNumOfEdges() { return numOfEdges; }
public void showGraph() { for (int[] link : edges) { System.err.println(Arrays.toString(link)); } } }
|