Good, better, best. Never let it rest.

图,深度优先和广度优先算法

粘贴代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

import javax.swing.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

public class Graph {
private ArrayList<String> vertexList;
private int[][] edges;
private int numOfEdges;
private boolean[] isVisited;

public static void main(String[] args) {
int n = 5;
String[] vertexs = {"A", "B", "C", "D", "E"};
Graph graph = new Graph(n);
for (String vertex : vertexs) {
graph.insertVertex(vertex);
}
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);

// 显示一把邻接矩阵
graph.showGraph();

// System.out.println("深度遍历");
// graph.dfs();

System.out.println();
System.out.println("广度遍历");
graph.bfs();
}

public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
isVisited = new boolean[n];
}

// 深度优先遍历算法
private void dfs(boolean[] isVisited, int i) {
System.out.print(getValueByIndex(i) + "->");
isVisited[i] = true;
int w = getFirstNeighbor(i);
while (w != -1) {
if (!isVisited[w]) {
dfs(isVisited, w);
}
// 根据前一个邻接节点,获取下一个邻接节点
w = getNextNeighbor(i, w);
}
}

// 对dfs进行重载,遍历所有结点,进行dfs
public void dfs() {
for (int i=0; i < getNumOfVertex(); i++) {
if (isVisited[i]) {
continue;
}
dfs(isVisited, i);
}
}

// 广度优先遍历算法
private void bfs(boolean[] isVisited, int i) {
int u;
int w;
LinkedList queue = new LinkedList();
System.out.print(getValueByIndex(i) + "=>");
isVisited[i] = true;
queue.addLast(i);

while ( !queue.isEmpty()) {
u = (Integer) queue.removeFirst();
w = getFirstNeighbor(u);
while (w != -1) {
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
isVisited[w] = true;
queue.addLast(w);
}
// 根据结点u,查找w后面的一个邻结点,递归查找
w = getNextNeighbor(u, w);
}
}
}

// 对bfs进行重载,遍历所有结点
public void bfs() {
for (int i = 0; i < getNumOfVertex(); i++) {
if (isVisited[i]) {
continue;
}
bfs(isVisited, i);
}
}

// 获取第一个邻接节点的下标w
public int getFirstNeighbor(int index) {
for (int j = 0; j < vertexList.size(); j++) {
if (edges[index][j] > 0) {
return j;
}
}
return -1;
}

// 根据前一个邻接节点,获取下一个邻接节点
public int getNextNeighbor(int v1, int v2) {
for (int j = v2 + 1; j < vertexList.size(); j++) {
if(edges[v1][j] > 0) {
return j;
}
}
return -1;
}

public void insertVertex(String vertex) {
vertexList.add(vertex);
}

public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}

public String getValueByIndex(int i) {
return vertexList.get(i);
}

public int getNumOfVertex() {
return vertexList.size();
}

public int getNumOfEdges() {
return numOfEdges;
}

public void showGraph() {
for (int[] link : edges) {
System.err.println(Arrays.toString(link));
}
}
}